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AUTOMATIC DAMPING OF VIBRATIONS OF AN AIRPLANE WING BY INTERNAL 

CONTROL FORCES 

V. I. Merkulov UDC 532.5 

An increase in the absolute dimensions of aircraft leads to a decrease in their dynamic 
rigidity. Both the frequency of natural vibrations and the structural damping factor are 
decreased. The deformations produced by impulsive forces die down slowly, but periodic dis- 
turbances may increase as a result of resonance. All this leads to a decrease of the flying 
llfe of the structure. We study various methods of damping elastic vibrations by using in- 
ternal forces. The amplitude, frequencies, and phase of the forces acting are governed by 
a control system. A movable mass, an internal tension, a flexible shaft, and a gyromotor 
are considered as a control. In contrast with the familiar method using external aerodynamic 
forces, an internal control continues to be effective also on the airfield where, as it turns 
out, the airplane is subjected to the largest dynamic load. 

I. Flexural--torslonal vibrations of a wing of small sweepback and large aspect ratio can 
be described by a two-component vector function {w(y, t), 8(y, t)} [i]. Here w(y, t) is the 
vertical displacement from the equilibrium position of the elastic axis of the wing, and 8(y, 
t) is the rotation of a chord of the wing about the elastic axis. These quantities are func- 
tions of the coordinate y of a cross section and the time t. In terms of these variables, 
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free flexural-torsional vibrations 
nary differential equations: 

of a wing are described by the following system of ordi- 

m w  - -  s$O --}- ( E I w " ) "  = O; ( 1 . 1 )  

. r .~  - s y ~  - (v.rO')'  = O, ( 1 . 2 )  

where m(y, t) is the distribution of the mass of t h e  wing along the axis, including the mass 
of the engine nacelles and the fuel tanks; burnup of fuel makes this mass a slowly varying 
function of time. If a movable mass in the wing is used for control, a rapidly varying term 
appears. 

Jy(y, t) is the polar moment of Intertla of the wing with respect to the elastic axis; 
Sy is the static moment, determined by the product of the mass m times the distance between 
the elastic axis and the axis of inertia. 

The products EI and GJ represent the flexural and torsional rigidities of the wing. 

In Eqs. (i.i) dots over letters denote time derivatives, and primes mean derivatives 
with respect to the spatial variable y. 

The end of the wing fastened to ~he fuselage satisfies the boundary conditions 

w = w ' = O = O  at y = O .  

The free end of the wing satisfies the following conditions: 

E f  w" = ( E I w " )  - -  O/ (1.3) 
GJO' = 0 ] at y = L 

(1.4) 

where L is the length of ~he wing. 

It is known that the vector function of free vibrations can be sought in the form 

U ~ Y ) ,  ]o(Y)}, 

where ~o is one of the natural frequencies, and fw and f0 are the elganfunctions of the vibra- 
tions of the elastic structure. 

A natural frequency mo satisfies the relation 

L 

; 

0 

(1.5) 

which we shall use later. We consider only one frequency and one vibrational mode, but since 
the problem is linear, the superposltion principle can be used to extend the results obtained 
to the general case. 

By considering only small control actions it can be assumed that the shape of the defor- 
mation is described by the same eigenfunctlons {fw(Y)) f%(Y)} as for free vibrations, and that 
only the natural frequency mo is changed by the addition of a negative imaginary part. The 
change in the real part of mo is of second order. We shall refine the concept of a small 
quantity later. 

2. A moving mass in a wing is most simply realized by the rotation of a concentrated 
mass mo in a circle about a certain point y = Z,. If the radius of the circle along which 
the mass moves is r, and the frequency of rotation is m,, the distributed mass of the wing m 
is increased by a function of the time and coordinate ml = mo~[y -- l: + r sin m,(t -- to)], 
where ~ is the delta function, which becomes infinite at y = l~ -- r sin m,(t -- to). In addi- 
tion, the moment of inertia of the wing is increased by 

J1 = mo~sin2~l(  t -- to)6 [Y -- ll + r s in ~l( t  -- to) ]. 

For this case the equations for flexural--corslonal vibrations of the wing take the form 

�9 m w  - -  syO + d/dt(m~w) - -  d/dt(sm~6) + ( E l w " ) "  = O, 
(2.1) 

] ~ 0  - -  syiv § d/dt(J~6) - -  d/dt(sm~tv) - -  (GJO') '  = O, 
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where s is the distance be=ween =he elastic axis and the axis of inertia of the wing, which 
we assume is fixed. 

Since =he control actions are small, the solution of system (2.1) with boundary condl- 
tions (1.3) and (1.4) can be sough= in the form 

w(y,  t) = A( t ) ]~  (y), 0 = A( t ) /o(y) ,  

where {fw(Y), f0(Y)} is the vecuor function of free vibrations, and A(t) is an unknown func- 
=ion of the time. This function can be determined by using the energy equation. To do this, 
we multiply the first of Eqs. (2.1) by w, the second by em add, and integrate with respect to 
y from 0 to L. By using boundary conditions (1.3), (1.4), Eq. (1.5), and the expressions for 
w and 8, we obtain an ordinary differential equation for A 

d dA ~ 
_ _  ml] w + J l /0  -- 2sml/wfO) dy 
dt ~ ( 2 . 2 )  d~A ~ ~ A  + L 

dt ~ 

0 

To within second-order terms in mx and 5~ the denominator can be evaluated for constant 
functions m(y) and Jy(y) without taking account of the varlable part introduced by the moving 
m a s s  

L 

N = ~ (m/~-F Y u / ~ -  2s~[o/,,.)dy. 
0 

The numerator can be considerably simplified. To do this we first evaluate the integral ap- 
pearing in it by using the fact that the functions m~ and Jx are delta functions 

L 

q = (m11  + Aft- 2smdo/w) = m0 (tl - r 
o 

+ r ~ sin ~ ~lt/~ (11 -- r sin % 0  -- 2s�91 (ll - -  r sin %t) /o  (11 -- r sin %t). 
Since the radius r is appreciably smaller than the distance between nodes of the eigenfunc- 
tion {fw, f0 }, we can write 

�9 r 

/w ( l l  - -  r s i n  % t )  = / w  (11) - -  r s m  ~lt/ ,c (lx), 

/o (11 - -  r s i n  ~ l t )  = fo (/x) - -  r s i n  % t / o  (/x). 

Neglecting second-order quantities, we obtain Q ffi Mt --Ma sin mtt~ where 

h/'l = mo [i2. (ll) _ 2s/o ( l l) /w (/1)]; 
! 

M,  = m o [2rf~ (ll)/$. (ll) - -  2sr/'~./o - -  2sr[o ( l~)/w (/~)], 

Thus, Eq. ( 2 . 2 )  takes the form 

~I2o# 1 dA 
d2A 4- f ~ A  - -  - - - -7-  cos % t  ~ / -  =-" O, 
dt 2 

where 

M 1 

We note that the control action entered the coefficient in Eq. (2.3). 
called parametric. 

Equation (2.3) can be solved by the van der Pol method [2]. 

To do this we set x ffi Ap z = dA/dt, and rewrite Eq. (2.3) in the form 

dx/dt = z, 

dz/clt -}- f ~ x  - -  (M2o~lz/N) Cos o~xt = O, 

whose solution we seek in the form 

z = a(t) cos [~t + X(t)], z = --a(t)~1 sin lot + g(t)]i 

where a(t) and X(t) are unknown solely varying functions of the time. 

( 2 . 3 )  

Such control is 

( 2 . 4 )  

( 2 . 5 )  
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After substituting (2.5) into (2.4), we obtain 

da dZ sin $ = O, --y/-eos ~ -- a at 
( 2 . 6 )  

dX cos ~ = aM~~ - sin' ap + a --~ ~ cos % t  sin r  

where ~ = fit + X(t). Elimination of dx/dt from the last system gives 

da aM2o 1 
d'-7 = ~ cos (olt sin 2 ~. ( 2 . 7 )  

According to van der Pol's method, the coefficient in gq. (2.7) can be averaged over 
time, or what amounts to the same thing, over the variable $. The result of the averaging 
depends on the frequency and phase of the control, which so far remain arbitrary. 

It is easy to see that the average value will be different from zero only if the con- 
trol frequency is 2~. 

Choosing the phase of the control to coincide with that of X, we obtain da/dt ffi -~M~/ 
2N. 

Hence it follows that the amplitude of the vibrations will decrease according to the law 

a(t) = a(O) exp [--  r 

where 

t 

tYtOr [)tw (/1) ffw (Zl) - -  8/W (/1) fO (/1)] 
L 

0 

To find the phase of X we first solve (2.6) for dx/dt, 

dxldt  = (M2-O-IN) cos (o~t sin 2~. 

It is clear from this that the phase of X is a slowly varying function which remains 
constant on the average. 

3. Let us solve the problem of the damping of vibrations of a wing by producing an in- 
ternal longitudinal stress. In this case the equations for flexural--torsional vibrations of 
the wing can be written in the form 

m w  - -  sv~ - -  r w "  -b ( E I w " ) "  --= 0 ,  JyO" - -  syw - -  (G:O') '  --- O, 

where T(t) is the cable tension. 

As before we use the energy method to reduce the problem to that of solving an ordinary 
differential equation for A(t) 

d2A A c r  T) A ( t ) = O ,  
dt ~ 

where 

T ~  
r ]w (L) / (L)- -y  [/' (y)l 2dy 

�9 0 
L 

2 2 
- 2 .I Io + 

0 

We write A(t) in the form A(t) = a(t) cos (mot -- • where a(t) 
tude of the vibrations. 
a(t) 

is the slowly varying ampli- 
Using van der Pol's method we find the equation for the amplitude 

dad__/. _+ "~ (t)2 (~176 s i n 2 ~  = O. 

It is clear from the equation that the control law T(t) must be chosen in the form 

"~(t) = % sin 2~ 2. 
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Then the equaCion for ~he amplitude with a time averaged coefficient takes the form 

da/dt + 1/4"l:00)0a = Q. 

H e n c e  a ( t )  = a ( O )  exp  [ - - z / . ' c o m o t ] .  

In this case the damping factor is given by 

r L (L) j 
i o 

~ --~" " ~  T O ~  L 

0 

By using gq. (1.5) the denominator can be expressed in terms of the potential energy of the 
deformed wing. In addition D the integral of the square of a small quan=ity can be neglected 
in the numerator. Then 

F 
rl~ (L) 1~ (L) 

L 

4 .f + Gs (io) 
0 

The products Tf w represents the projection of the force T on the transverse coordinate. 
In this case a turns out to be equal to one-fourth the ratio of the work done by the control 
force to the potential energy of the deformed wing. 

The requirement a << i, on the one hand, is necessary for the validity of the approxima- 
tions made above~ and on the other hand D permits the treatment of small control forces. At 
the same timep an extremely small a will correspond to slowly damped vibrations. 

It is noted that the mechanisms considered for damping vibrations retain their effective- 
ness even when the flexure of the wing is not accompanied by torsion. In this case the damp- 
ing factor for a movable mass will have the value 

N 

For control by using a variable internal stress 

T/"  (L)/w (L) 
L 

0 

4. We now consider damping by a moment produced by the bending of a flexible shaft 
passing through the whole wing. One end of the shaft is connected to che outer end of the 
wing, and the other end~ located in the alrplane fuselagep can be twisted according to a 
definite law by a hydraulic device. 

The vibration of a wing acted on by a moment applied at the cross section y = I can be 
written in the form 

mlb - syO + ( E I w " ) "  = O, 

JuO - -  syw - -  (GJO')' = Mg( l  - -  y), 

where M(t) is the moment, and 6(~ -- y) is the delta function. 

Starting from the assumption tha~ the control action is small, we seek the solution in 
the usual form. For the function A(t) we obtain the equation 

d2A o)~ A = M (t) /0 (l) 
dt~ L 

0 

We determine the control moment from the law 

M - -Mo%fo( l )dA /d t .  
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In this case the function A(t) will decrease according to the law 

A(t) = A(O) exp [--=~], 

where 

= Mo/ /N. 

The maximum value of the torque Mo is determined by the product of the rigidity of the 
shaft times the torsion angle, and of course by the tensile strength. The possibility of 
twisting the shaft through a large angle limited only by the tensile strength permits maximum 
use of the shaft material and thus a decrease in its weight. 

Control by a gyroscopic moment is of particular interest. While all the preceding cases 
required a system of vibration transducers, amplifiers, and force mechanisms, a flywheel, or 
better stated, a gyromotor, permits the combination of all the functions of the control system 
to achieve maximum simplicity and reliability. 

We denote by K the angular momentum of the flywheel. For a large angular momentum and 
a small angular velocity of precession of its axis, it is possible to use the law of motion 
of the axis [3] 

K%=Mx, Ko~=--M v, 

where mx and ~y are the angular velocities of the axis of the flywheel about the x and y axes, 
and M x and My are the components of the applied moment. 

In order to damp flexural-~orsional vibrations of a wing, the flywheel must be coupled 
to the wing in such a way that the torsional vibrations of the wing excite the same rotations 
of the axis of the flywheel about the y axis, i.e., 

% = 6(l~, t) = A ( t ) ~ ( l O .  

We denote by l, the y coordinate of the position of the flywheel. 

We shall specify the angular velocity ~x in a special way depending on the purpose and 
means of control. We locate the undisturbed position of the axis of the flywheel perpendicu- 
lar to the elastic axis of the wing. 

We write the component of the angular velocity mx as the sum 

~ x  = O~w/OxOt + $ ( 0 .  

Here the mixed derivative is the angular velocity of flexure of the wing axis, and ~ is 
the angular velocity of rotation of the axis of the flywhee~ relative to the bent wing. 
While the first term is not at our disposal, the velocity ~(t) can be chosen at our discre- 
tion depending on the purposes and means of control. 

A sufficiently general control law can be specified by the expression 

= p 6  + ~ o q O  , (4.1) 

where p and q are certain dimensionless coefficients. 

The equations of vibrations of a wing acted upon by gyroscopic moments can be written 
in the form 

, n w  - -  svO - -  [ M x 6 ( l  1 - -  y ) ] '  + ( E h v " ) "  = O, 

- - - v )  - = o .  

The energy equation leads to the following equation for the amplitude A(t): 
�9 t 

dt  2 L 

0 

We substitute into this the values of the moments M x and My 

M x  = Ko~ v = K / o  (l~) , M v = - -  Ko)~ = - -  K ~ K / ~  (1~) - -~  - -  K p / o  (l~) -dT - -  K q A / o  (l~) co o. 
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As a result, we obtain 

where 

dA L o d2A + (Oo~-d- ~ -, f l ' A  O, 
dr" 

(4.2) 

,, Kqf 0 (11) 
~2=(o~ i+ L 

co o ' dv/0 2sylo/~ ) dy 
0 

K + p/o (z,)]/o (h) 
~---'~ L 

' 2 , 2 
% j :.:o d,. 

0 

The following expressions for ~ and a are sufficiently accurate: 

Q ~ (dO,  CY.,~, L 

% m + -- / J O  dY 
0 

Let us consider the question of the physical realization of the control law (4.1) 
chosen. 

(4.3) 

The presence of the term ~oq0 in (4.1) leads to a certain change in the frequency of 
vibrations, and its realization requires an actuator with feedback. As.always, the damping 
is due to a term proportional to the strain rate, in the present case pe. 

Rotations about the y axis connected with the wing give rise to a gyroscopic moment 
about the Ox axis. If now the flywheel housing is connected to thewlng through a damper 
which permits rotation about the x axis according to the law M x -~, we ensure the required 
relation 

KO = •  
(4.4) 

Hence the factor p in Eqs. (4.1)-(4.3) will be given by 

p = K/•  

It is desirable that p be as large as possible, but it is restricted by kinematic condi- 
tions. Let us set 0 = 0o exp (i~t), ~ = 9 o exp (i~t). Then Eq. (4.4) gives a relation for 
the amplitudes of the vibrations 

Keo = U~o" 

The amplitude of the rotation of the axis of the flywheel cannot exceed 90 ~ since in this 
position the flywheel could not produce the required gyroscopic moment. The formulas used 
generally assume that the angle ~o < 30 ~ The amplitude 8e is determined by operating condi- 
tions. Hence it is necessary to choose the damping factor ~, so that the ratio K/ ~< ~o/8,, 
otherwise the flywheel will bump against the mechanical stops in the limiting positions. 
From the mathematical point of view this leads to a violation of the conditions of appli- 
cability of the description used, and from the technical point of view to decrease the effec- 
tiveness of the damping system. 
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2. 
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